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OPTIMAL ONE-SECTION AND TWO-SECTION CIRCULAR SOUND-ABSORBING DUCT
LINERS FOR PLANE-WAVE AND MONOPOLE SOURCES WITHOUT FLOW

Harold C. Lester and Joe W. Posey
Langley Research Center

SUMMARY

A discrete frequency study is made of the influence of source character-
istiecs on the optimal properties of acoustically lined uniform and two-section
ducts. Two simplified sources, a plane wave and a monopole, are considered in
some detail and over a greater frequency range than has been previously studied.
Source and termination impedance effects are given limited examination. An
example of a turbomachinery source and three associated source variants are also
presented.

Optimal liner designs based on modal theory approach the Cremer criterion
at low frequencies and the geometric acoustics 1limit at high frequencies. Over
an intermediate frequency range, optimal two-section liners produced higher
transmission losses than did the uniform configurations. Source distribution
effects were found to have a significant effect on optimal liner design, but
source and termination impedance effects appear to be relatively unimportant.

INTRODUCTION

In recent years much research effort has been directed toward developing
mathematical models for understanding the propagation and attenuation of sound
in aircraft engine ducts. In the present study, optimal one-section and two-
section circular sound-absorbing duct liners are determined for plane wave and
monopole sources without flow. The optimization is performed numerically by
the application of an extremum algorithm to an analytical duct propagation
model.

An optimal liner is achieved by judiciously selecting the impedance charac-
teristics of the liner so that maximum sound attenuation is produced for a given
design condition. The often-cited work of Cremer (ref. 1) is the earliest
attempt to define an optimal liner. Cremer’s approach is based on maximizing
the attenuation rate of the lowest order (least attenuated) acoustical mode prop-
agating in an infinitely long, two-dimensional duct. Optimal liner impedance
values have also been determined by Rice (ref. 2) for a plane-wave source in an
infinitely long, uniformly lined, circular duct without flow. Rice’s model is
based on the superposition of a finite number of soft-wall radial duct modes.
Contour maps of constant attenuation in the impedance plane were employed to
determine optimal liner impedance values. Rice found that the optimum impedance
was a function of frequency and length-diameter ratio of the circular duct.



Tester (ref. 3) recently generalized and extended Cremer s results for
application to rectangular and circular cross sections and to arbitrary higher
order modes. This extension was motivated by the consideration that the lowest
order mode does not necessarily carry most of the acoustical power. Tester
showed, however, that the circular-duct generalization of Cremer s optimum
impedance was the limit, for a large length-diameter ratio, of Rice’s optimum
impedance.

Wilkinson (ref. 4) was the first to calculate optimal liner impedance
values by using an automated optimization procedure. He utilized an integral-
equation propagation model coupled with the method of steepest descent. His
results for uniform cylindrical liners with a plane-wave source compare favor-
ably with Rice’s results (ref. 2). Wilkinson also optimized a two-section duct
and found that although the impedances of the two optimized sections were
noticeably different, there was less than 1-dB increase in the duct transmission
loss. In contrast to Wilkinson’s result, numerical studies by Lansing and
Zorumski (ref. 5) showed that multisectioned (three sections) liners may give
a significant improvement over uniform liners.

Quinn (ref. 6) used a finite-difference solution of the convective wave
equation to study optimal liners although details of his minimization method are
not mentioned. He attempted to find the number of sections (of equal length)
which, when optimized with respect to impedance, would give the largest attenu-
ation in a given total length. A small improvement was found by Quinn with two
sections (agreeing with Wilkinson), large improvements in passing to three and
four sections (agreeing with Lansing and Zorumski), and finally, a further small
improvement with a fifth section. Quinn also used a plane-wave source to con-
firm Lansing and Zorumski’ s result (based on a point source) that three-section
liners maintain their effectiveness over a broad frequency range.

Beckemeyer, Sawdy, and Patterson (refs. 7 and 8) have also investigated the
properties of optimal multisectioned ducts. Their theoretical model was based
on modal superposition (mode matching method). A conjugate gradient algorithm
was utilized in this optimization process. Beckemeyer and Sawdy’s analytical
studies defined two-section ducts which showed significant improvement over a
one-section configuration and contradicted the results of Wilkinson and Quinn.
Beckemeyer and Sawdy (ref. 7) have also improved the understanding of the phys-
ical process which causes multisectioned ducts to have better performance.
Although Lansing and Zorumski (ref. 5) speculated that a reflection process was
responsible for the .behavior of multisectioned ducts, Beckemeyer and Sawdy
showed that there was no significant energy reflection, but rather that there
is a reflection of high order modes and a transmission of sound as high order
modes which are easily attenuated by the liner in the second section. Thus,
the mechanism of added transmission loss in a multisectioned duct seems to be a
conditioning of the sound in one section which makes it susceptible to absorp-
tion in a following section. Sawdy, Beckemeyer, and Patterson (ref. 8) utilized
their multisectioned duct optimization to design duct liners which were subse-
quently tested in a flow duct facility. In their design studies, they found
that the source has a significant influence on the predicted attenuation of a
given duct design. Their experimental results confirmed that multisectioned
liners, properly designed, perform better than the best possible uniform liners.
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The history of multisectioned liners is remarkable in acoustics, in that the
analytical studies have led experimental work.

The main purpose of this paper is to provide a detailed investigation of
the influence of source characteristics on the optimal properties of uniform and
two-section ducts. The duct propagation theory, upon which the present calcu-
lations are based, is that of Zorumski (ref. 9). The numerical optimization
algorithm used is that of Davidon, Fletcher, and Powell (discussed in ref. 10).
Two simplified sources are considered in detail: a plane-wave source and a
monopole source. Results of previously published optimization studies have
generally been based on the assumption of a plane-wave source or upon a source
plane pressure distribution determined by the superposition of a few radial
modes with arbitrarily weighted amplitudes. The present paper also extends the
frequency range of previous studies. Results in the normalized frequency range
2 S kb £ 20 are compared with simple low-frequency (Cremer) and high-frequency
(geometric acoustics) approximations at the respective limits of this range.
The effects of source and termination impedance, not considered in previous
optimization work, are given a cursory examination in the present paper through
the use of some simplified source and termination models. Although no detailed
study is attempted here of more sophisticated source models, one example is
presented of a turbomachinery source. Optimal liners having one, two, and
three sections are determined for a theoretically exact rotor-wake and stator

interaction model and are compared with results for three arbitrary source
variants.

SYMBOLS
A wave amplitude
K vector of wave amplitudes
B admittance vector
b duct radius
c ambient speed of sound
D ascent vector (eq. (A2))
d liner depth
{11 identity matrix
Im( ) imaginary part of ( )
IL insertion loss

i = -1



Bessel functions of first and second kind, respectively

scalar wave number, w/c

total length of duct liner

uniform flow Mach number
circumferential wave number

number of lined duct sections

source pressure coefficients (eq. (13))
acoustic pressure

source vector

source velocity coefficients (eq. (15))
real part of ( )

vector, defined in equations (A3)
cylindrical coordinates
positive-definite matrix (see egs. (A3))
transmission loss

time

axial acoustic velocity

system matrix

normal acoustic impedance

modal termination impedance coefficients (eq.

Zoyw = Zmy
scalar minimization parameter
specific liner admittance, & - io

source admittance (eq. (14))

Kronecker delta function

(19)); note that

specific liner impedance, o + i cot (kd) where ¢

1/8



0 liner resistance (also used as cylindrical cobordinate)

A radial wave number, J;A; 2MQ - (1 - M2)Q2
3 liner conductance

n(z) acoustic energy flux at axial coordinate =z
P ambient density

o liner susceptance

1,8 constrained variables for o and d (see eqgs. (9))
¢ incidence angle

Y(kr) radial mode function

Q complex axial wave number (propagation constant)
w circular frequency

v{} gradient of { }

{ }* complex conjugate of { }

Subscripts:

c Cremer quantity

h denotes hard wall quantity

i liner section index (i = 1, 2, . . ., N)

k iteration index

m circumferential wave number

0 initial value

s source quantity

t termination quantity

U,V radial mode indices

Superscripts:

+

denotes quantity associated with positive (+) or negative (=)
traveling wave



[ 1~ matrix inverse

[ ]T matrix transpose

ANALYTICAL CONSIDERATIONS

This section reviews some of the relevant analytical considerations of
optimal liner design. In particular, the essential features of a duct propaga-
tion model for calculating transmission losses are summarized. Also discussed
is the associated numerical algorithm for maximizing the loss function.

Definition of Optimal Liner

Consider the uniform circular duct configuration shown in figure 1. The
lined section has a radius b and length L and is assumed to have admittance
B(w,z) which varies with 2z 1in a stepwise fashion. A periodic source, with-
known modal properties, is shown located to the left of the lined section
(0 £ z £ L) and provides an influx of acoustical energy 1(0). In practice,
the superimposed source modal properties (amplitudes and phase angles) represent
the complex pressure patterns generated by the rotating blades and stators of an
aircraft engine at a known operating condition. A measure of the liner’s effec-
tiveness as a sound absorber is given by the transmission loss function TL

TL(B) = =10 log,, [;é%%] 1)

where I(L) is the acoustical power passing the plane =z = L. Within the con-
text of this paper, an optimal liner is a liner configuration possessing admit-
tance B so that the resulting transmission loss TL 1is a maximum.

In the following section a propagation model for calculating the transmis-
sion loss TL (eq. (1)) is reviewed. A general purpose numerical procedure is
then described for maximizing the transmission loss TL with respect to the
liner admittance B.

Propagation Model

For the present study, the mode summation propagation theory developed by
Zorumski (ref. 9) for multisectioned, axisymmetric ducts is employed. The
essential element of Zorumski’s mathematical duct model is the harmonic (e
solution of the convective wave equation for the mth circumferential harmonic
of the complex pressure:

—i(l)t)

+
x N % ie  kz
Py (r,z) = pc? }E: Apy ¥y (kr)e ™ _ (2)

u=1
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The pressure }E: pr;(r',z)el(m6 wt)  pepresents an exact solution for an infi-

scripts indicate that the pressure field is composed of a superposition of
left (-) and right (+) moving waves. For a given circumferential wave number m,

. m=0 .
nitely long duct having uniform wall admittance properties. The + super-

the corresponding axial wave numbers Qi and radial mode functions wt (kr)
are determined from the cross-sectional geometry and the wall (liner) agﬁit-
tance B. The mode functions ¥ (kr) for a circular duct are Bessel functions
of the first kind. Each term in Ehe modal series (eq. (2)) is weighted by a

. s + . . >
complex coefficient Aﬁu which serves as a generalized coordinate to be
determined.

A multisectioned liner configuration consists of a union of several liner
sections each possessing uniform admittance properties. Within each section
the pressure can be expressed in series fashion as in equation (2). Of course,

+ + . +
the parameters B8, Aﬁu’ and Qﬁu and the mode functions wiu(kr) vary from

section to section. The coefficients At for adjacent liner sections are
coupled by imposing pressure and velocity continuity conditions at the section
interfaces. Zorumski shows that this approach readily leads to the definition
of transmission and reflection matrices. The governing equation for the multi-
sectioned duct liner configuration is then expressible im a matrix format as

[(Wia = Q (3)

with solution
A= [w1™'Q ()

The system matrix [W] is a non-Hermitian complex matrix whose non-null off-
diagonal submatrices account for the transmission and reflection effects. The
elements of the source vector Q consist of the modal coefficients, generally
complex, of an acoustic source located within the configuration. The elements

of the vector A are the modal coefficients Aéu of the various sections.

Of particular importance in the following will be the transmission loss
TL (in decibels) as given by equation (1). 1In this equation mu(0) is the input
axial acoustical energy at the source plane 2z = 0 (see fig. 1) and 1(L) is
the exit energy flux from the last lined section. In lieu of transmission loss,
some researchers use insertion loss IL which is obtained by replacing 1(0)
in equation (1) by the input axial acoustical energy Hh(O) provided by the
source if it were located in an infinitely long, hard-walled duct. The axial



energy flux q(z) at an arbitrary section located at coordinate =z is given
by Cantrell and Hart (ref. 11) as

1 2'"' b M %
1{z) = = Re / f (p + pcMu)(u + - p) r dr do (5)
2 o Jo pc

where p is the complex pressure, u is the axial acoustic particle velocity,

M is Mach number, p is the ambient density, ¢ 1is the ambient speed of sound,
() denotes complex conjugation, and Re( ) indicates that only the real part
of the quantity in brackets contributes to the flux 1u(z).

In a following section a numerical strategy is discussed for predicting
the liner admittance value which gives a maximum transmission loss TL. It is

therefore convenient to define an admittance vector B for a duct with N
lined sections as follows:

('51\

-0,
£2

-0, > (6)

wi
fl
N

EN

"N J

where &; and o; are the real (conductance) and imaginary (susceptance)
parts, respectively, of the liner admittance of the ith section.

Constraint Equations
It is assumed throughout the analysis that the duct wall liner is of the

single-layer locally reacting type with a specific normal acoustical impedance ¢
given as follows:

£ = 6 + i cot (kd) ()

The impedance properties expressed by equation (7) are typical of the cavity-
backed, perforated face sheet types presently used for noise abatement in the
nacelles of commercial jet aircraft. The mathematical model (eq. (7)) assumes

8



that the face sheet 1is nonreactive and has a resistance ¢. The nondimensional
cavity depth is denoted as kd. The reciprocal of the impedance ¢ 1is the
liner admittance g; that is,

g = o (8)

In order to constrain the liner impedance variables g and kd to physically
realizable ranges, the following transformation of variables was used:

8 = 5(1 + cos 1)

(9)
kd = 1-2'(1 + cos §)

This change of variables (egqs. (9)) assumes that

06 210
(10)

(=}
liA

kd £

Thus Tt and ¢ were utilized as the free variables in the numerical optimiza-
tion process.

Initial values of ¢ and ¢, for the uniform liner configurations, were
generally based on Cremer’s least attenuated mode criterion (refs. 1, 3, and 12).
For a circular duct liner, Cremer s optimum admittance is

2.98 - 1.28i (11a)
— % a

Bo =

as given by Zorumski. (See eq. (4) of ref. 12.) Based on the eigenvalue for
the (0,0) and (0,1) mode pair, the associated transmission loss is

TL, = -8.69Im(LR,) (11b)

where Im( ) denotes the imaginary part, L is length, and (eq. 5(e),
ref. 12)

1/2
Qq = %Blikb)2 - (2.98 - 1.281)%] (11¢)



Initial values for 1 and $ can be calculated from equation (11a) with the
aid of equations (7) to (9).

Source Impedance Equation

Within the framework afforded by the Zorumski propagation model (ref. 9),
a number of different source models can be easily represented. Perhaps the
simplest is a wave source, where the right-moving waves are specified at the
source plane (z = 0). Reflections from impedance discontinuities, although
permitted, are assumed not to alter the distributions of source mode amplitudes
and phase angles. This type of source is used extensively throughout the
present paper.

In reality, however, the source and duct pressure fields interact. That
is, the acoustic field induces a back loading on the source mechanism which
alters its capacity to generate acoustical energy. This coupling effect can
be studied by defining a transfer impedance as suggested in figure 2.

Pressure source.- The coupling shown in figure 2(a) defines what is termed
as a pressure sourc¢e. Here Z_, which is a complex frequency-dependent vari-
able, represents the transfer iImpedance between the source and duct. The
transfer impedance Zs is also a function of position on the source plane;
however, this dependence is ignored to simplify the present problem. The
acoustic pressure to the left of the source plane (z = 0) is the source pres-
sure p_, which is expressed in terms of its modal characteristics. (See
eq. (2).) The acoustic particle velocity distribution at the source plane is
denoted as u., Therefore, the acoustic pressure p to the right of the source
plane is given by

P = pg - Zsu (12)

where 2 is the source impedance. In the absence of flow, the duct modes are
orthogonal so that each right-moving mode is coupled only to its left-moving
counterpart at the source plane. (See ref. 9.) Hence, each such mode pair
must satisfy the source impedance condition (eq. (12)) independently of the
other mode pairs. By using equations (2) and (12), there follows

1 -2 7 P
" (___“_>A o tm (1)

my my
1+ Qmuzs 1T+ QmuZS

in which Pp denotes the modal coefficients of the source pressure distribu-
tion. Here m is the circumferential wave number and wu is the radial mode
index. Equation (13) is a special case of the general form suggested in refer-
ence 9 for the representation of the source.

10



Velocity source.- Equivalently, a velocity source can be defined (ref. 13)
as shown in figure 2(b). The source "particle" velocity u is specified at
the source plane 2z = 0. The acoustic pressure to the right of the source
plane is denoted by p. The particle velocity u 1is then given by the follow-
ing equation:

u = ug - Bsp (14)

where B_ = z_ =1 is the source admittance. The relationship between the modal
amplitudes is then

AL = ———— A+ —— (15)

where Qmu denotes the modal coefficients of the source velocity distribution.

Plane-wave source.- A plane-wave source, as defined in this paper, is a
source such that the superposition of positive traveling waves at the source
plane z = 0 gives a uniform acoustic pressure distribution. The effect of
negative traveling waves on the source pressure distribution is neglected.
Details by which the plane-wave modal coefficients P_.  (eq. (13)) can be
derived are given by Rice (ref. 2) and are as follows:

JE'Q1(xukb)

) 2 .2
un B2 Jo( kb)

Aou (16)

where 8 1s the source-plane liner admittance value and the Au values are
the solutions of

dJO(xukr)
——— - ikBJO(Xukr) =0 (17)
dr r=>b
Monopole source.- The modal coefficients Q (eq. (15)) for a monopole

source at r = 0 and z = 0 may be derived from the generalized results given
by Zorumski. (See discussion pertinent to eqs. (19) and (38) of ref. 9.) The

expressions for the source admittance Bs and the QOu values are as follows:

Bs = %, = 2, (18a)

1"

I



-inkuQ Ab [YO(Aukr'i'

Q (18b)
3
a_xu{Ab EIO(Aukril}
ay,(x kr)
Ar I:Yo(xukr*)] - _odr“_ - ikBY((x kr) (18c)
dJ (A _kr)
Ar EJO(Aukr'):I = OTP“— - 1kBJ (A kr) (184)

Termination Impedance

In general, when sound propagating through a duct reaches a termination, a
radiated wave and a reflected wave are produced. For the zero flow case, the
relationship between modal pressures and velocities may be expressed in terms

of a modal impedance Zmuv (ref. 13) as follows:
Py = :E: ZuvYmy (19)
v=1

In order to simplify the present study, let the actual modal impedance Z

uv
be represented by the direct termination impedance § .2 and designate
these impedances as In terms of the modal amplitudes at the termination
plane z = L, the 1mpegance condition is given by
1-0_ .2
- mu“mu  +
*

Optimization Method

An optimal liner configuration is one whose admittance properties, as
expressed through the admittance vector §, produce a maximum transmission
loss TL. A number of researchers (refs. 4 and 6 to 8) have recently consid-
ered numerical optimization algorithms in conjunction with mathematical models
of multisectioned duct liners. The authors of this paper initiated a similar
research effort by combining Zorumski’s (ref. 9) multisectioned duct theory
and the optimization algorithm of Davidon, Fletcher, and Powell (DFP method,
ref. 10).

The Davidon-Fletcher-Powell (DFP) optimization method is répresentative
of a general class of numerical algorithms known as descent (or ascent) methods.
Herein, this method is referred to as an ascent method since the duct optimiza-

12



tion problem has been defined in terms of maximizing the loss function. A
brief review of the DFP method is given in the appendix. The defining feature,
however, is that the solution vector B 1is obtained as the limit of a sequence

Biy1 = By + “kﬁk (k =0, 1, 2, « . .) (21)

where a is a scalar parameter, D is an ascent vector, and k 1is the
iteration index. The iterative process begins by assuming an initial value BO
for the admittance vector. The rationale for defining the ascent vector D

and determining the parameter o, 1is discussed in the appendix. The new or
modified admittance vector Bk+1 for each iteration step is chosen so that the
transmission loss TL increases in value. The iteration sequence is continued
until convergence to a maximum is achieved.

Ascent optimization algorithms, in general, will locate solutions which
are local (that is, relative) maxima. Thus, if the problem has multiple local
maxima, different initial values B may iteratively converge to different
"solutions" (local maxima) in the agmittance space with different transmission
loss values. Also, when a maximum is located in a relatively flat region of
the function space, the solution may vary because of differences in convergence
criteria and direction from which the maximum is approached. Luenberger
(ref. 10) gives an excellent discussion of these anomalies and the reader is
referred to this reference for additional discussion.

DISCUSSION OF RESULTS

Optimal liner properties calculated by the Davidon-Fletcher-Powell (DFP)
numerical optimization algorithm are presented. Plane-wave and monopole
sources, as well as an example of a turbomachinery source, are considered.
Cremer 's criterion (refs. 1, 3, and 12) was used as a starting point for all
uniform liner configurations. Optimal admittance values determined numerically
for the uniform liners were generally used as the initial solutions for the
corresponding multisectioned cases.

As defined by equation (16), a plane-wave source infers a uniform source-
plane pressure distribution as approximated by the superposition of a finite
number of positive traveling waves (radial modes). Generally, only five radial
modes were used for this source type. However, several ten mode cases were used
for higher kb values in order to validate the five mode approximation. The
modal coefficients for the monopole source are defined in equation (18). All
monopole source results are based on the superposition of ten radial modes.

Infinite Duct With a Uniform Liner
Optimal properties are presented in this section for an infinite uniform

liner in a circular duct (fig. 3). The source is taken to be at z = 0 and
the transmission loss TL is maximized over the interval =z = 0 to =z =1L.

13



First, a plane-wave source is studied and then a monopole source, located on
the duct axis, is considered.

Plane-wave source.- Optimal admittance properties and their associated
maximum transmission losses are presented in figure 4 and table I for the uni-
form, infinite liner configuration illustrated in figure 3. Data are presented
for a frequency range 2 £ kb £ 20 and for a length-diameter ratio of unity
(L = 2b). The solid curves in figure U4 were calculated by the DFP algorithm.
Cremer’s analytical approximations (eq. (11)) and Rice’s graphical results
(ref. 2) are also shown in figure 4 for comparison.

Although Cremer’s criterion provided adequate initial estimates for
admittance, there are discernible differences between the optimal admittance
values predicted by these two methods, as is clearly illustrated in figures 4(b)
and 4(c). The optimal conductance given by the DFP solution is as little
as two-thirds of the Cremer value in the frequency range (4 £ kb £ 6), but
approaches the Cremer value at higher frequencies. The optimal susceptance,
however, is at least 2 to 3 times the Cremer value for all frequencies where
kb 2 4., The associated transmission loss for Cremer’s criterion (eq. 11(b))
is shown by the dashed curve in figure 4(a) and is provided only to indicate a
baseline trend. Since equation (11a) is based on the exponential decay of a
single mode (the least attenuated mode), it predicts unrealistically high losses
of several decibels for kb 2 4. Such losses are clearly not possible since
the maximum losses are given by the DFP and Rice solutions. This condition
was confirmed by taking several of Cremer’s optimal admittance values from fig-
ures 4(b) and Y4(c) and calculating the loss by use of the Zorumski duct propa-
gation model. Although these data are not shown, in all cases the computed
transmission losses were less than the predicted optimal DFP solutions.

The optimal transmission losses obtained from Rice’s paper (ref. 2) are
indicated by the short-long dashed curve in figure 4(a). The associated admit-
tance values and the DFP values are virtually indistinguishable when plotted
and both are indicated by the solid curves in figures U4(b) and 4(c). Rice
utilized a similar mathematical model for the propagation calculations, although
optimal admittance values were evidently determined from constant attenuation
plots in the admittance plane. Two such plots obtained during the course of
the present study are illustrated in figure 5.

In the case of uniform liners, for which the admittance space is two-
dimensional, contour plots of constant transmission loss are useful in showing
the liner performance over a fairly large region in the admittance plane for a
given value of the normalized frequency kb. Figure 5(a) is for kb = 2.0 and
illustrates that more than one relative maximum of the transmission loss may
exist. Here there are two relative maxima of essentially the same magnitude
(transmission loss) which occur for different admittance values. Starting
the DFP algorithm at the Cremer point (eq. (11a)) gives a solution of about
49.8 dB with B = 1.55 - 1.29i. However, starting at the indicated point
(B = 1.30 -~ 2.20i) gives a solution of 47.6 dB at an admittance value of about
B = 1.68 - 2.62i. The figure clearly indicates that with ascent algorithms,
the final solution can be a function of the starting point. It should be noted
that the dashed lines indicate only the general direction of convergence and
not the specific direction taken by the DFP numerical procedure.

14



A contour plot for a normalized frequency of kb = 3.0 is shown in fig-
ure 5(b). Only one extremum is found in the region of interest, which seemed to
be typical for all cases with kb 2 3.0. Here the transmission loss peak is
well defined; that is, the maximum does not occur in a relatively flat region
(as was the case for kb = 2.0) which could cause convergence problems with the
DFP algorithm. A maximum transmission loss of slightly more than 30 dB is indi-
cated for a liner with an admittance value of about 8 = 0.80 - 0.78i. This

result is in excellent agreement with the DFP solution (fig. Y4 and table I) and
Rice s solution (ref. 2).

Monopole source.- Figure 6 gives the maximum transmission losses and
admittance properties of the infinite uniform liner (fig. 3), introduced in the
preceding section, a monopole source being located on the duct center line at
2 = 0. Thus, the situation is axisymmetric and only duct modes with zero cir-
cumferential wave number are excited. Initial admittance values, again based

on Cremer s criterion (eq. (11a)), and the corresponding DFP solutions are
summarized in table II.

For low frequencies (kb £ 3), when only the lowest order radial mode is
cut on, the trend given by Cremer’s criterion agrees fairly well with the
numerically optimized solutions. However, significant differences in the two
predictions occur as soon as the first higher order radial mode begins to prop-
agate. For reference, the hard-wall cut-on conditions for the first seven
m = 0 radial modes occur at kb = 0.0, 3.83, 7.02, 10.17, 13.32, 16.47,
and 19.62. Cremer’ s criterion predicts a maximum transmission loss of less
than 4 dB at a kb = 20, whereas a numerically optimized liner can theoreti-
cally give about 10-dB loss. This is simply because higher order radial modes
are much more strongly excited by a monopole source at higher frequencies. The
oscillatory character of the optimal admittance, as displayed in figures 6(b)
and 6(c), can probably be attributed to the multimodal nature of this particu-
lar type of acoustic source.

Since one generally has difficulty in forming a clear mental picture of
acoustical propagation expressed as the sum of many modes, it is of value to
compare the high-frequency behavior of the numerically optimized liner of fig-
ure 6 with the predictions of geometrical acoustics. When kb >> 1, geometrical
acoustics is applicable for a monopole source in a short duct and a ray-tracing
solution is a valid approximation. Therefore, the acoustic pressure and parti-
cle velocity at any point on the duct section at z = L may be found by summing
the contributions from the direct ray and all the reflected rays passing through
that point. (See fig. 7.) From this viewpoint, the best that any liner could
do would be to completely absorb all incident rays, and thereby reduce the
acoustic wave at z = L to only the direct radiation. For L = 2b, only
11 percent of the rays emitted from the right side of the source are radiated
directly through the =z = L cross section; thus, an upper limit for the trans-
mission loss of 9.6 dB (kb >> 1) is implied. Figure 6(a) shows that the opti-
mal transmission loss predicted from the modal theory settles down to about
this value as kb approaches 20.

Naturally, no uniform point-reacting liner could provide complete absorp-
tion of all iricident rays, since the angle of incidence ¢ and the distance
from the course b/cos ¢ are not constant. Complete absorption occurs only
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when the surface admittance in the direction of the incident ray is equal to
the specific acoustic admittance of a spherical wave at the appropriate distance
from the source. When normalized with respect to the characteristic admittance

cos ¢
kb

not normal to the locally reacting liner, the required normal admittance is not
this spherical wave admittance, but is this quantity multiplied by cos ¢. (See
ref. 14.)

of the medium, this specific admittance is 1.0 + i

Because the rays are

In estimating the optimal uniform liner admittance from geometrical acous=
tics considerations, it is reasonable to assume that any ray at z = L which
has been reflected off the liner more than once makes a negligible contribution
to the acoustic disturbance. Figure 7 shows a ray which is reflected only once
and then just c¢lears the end of the duct. Such a ray strikes the liner at
z @ L./3 and any ray which hits the duct wall closer to the source will suffer
multiple reflections. Therefore, using a single reflection criterion requires
maximizing absorption for rays which first contact the liner between 2z = L/3
and =z = L. For such rays, the average value of cos ¢ 1is approximately 0.7,

0.51

and: implies an optimal normal admittance of about 0.7 + The real and

imaginary parts of the optimal admittance are in good agreement with geometri-
cal predictions for large kb (figs. 6(b) and 6(c)).

Geometrical acoustics cannot be used to estimate the optimal admittance
and attenuation for a plane-wave source, because in that case, all rays are
directed parallel to the duct axis and suffer no reflections.

Source and Termination Impedance Effects on
Optimal Liner Configurations

In this section the effe¢t on optimal liner performance of source and
termination impedance conditions is briefly examined. In previous sections,
results for various types of wave sources have been presented; that is, the
source modal properties were defined solely in terms of the amplitudes and phase
angles of the positive traveling waves (modes) at the source plane. Alterna-
tively, the noise source can be coupled to the duct by specifying a source
impedance. (See discussion pertinent to egs. (12) and (14).) Hence, either
the source pressure or velocity contribution along with the source impedance
can be specified. 1In a similar manner a termination impedance can be defined.
(See eq. (19).) The results presented in the preceding sections were based on
a traveling wave system, no left moving modes being allowed in accordance with
the infinite uniform duct assumption. However, many researchers (see ref. 6,
for example) use an impedance condition, usually Zt = 1 (that is, a pc ’
termination), at the duct exit plane.

Results presented in this section are for a finite uniform liner con-
figuration., However, the optimization algorithm was initialized at the
optimal admittance values for the corresponding liner of infinite length.
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(See fig. 3 and table I.) Also, since the energy radiated from the source is
a function of 2 and the liner properties, the optimal liner is defined in
this section to ge the one which produces the maximum insertion loss.

Source impedance.- In table III the maximum insertion losses for a one-
section liner are tabulated for several values of the normalized frequency kb.
Three different source types are considered: (1) a plane-wave source as used
in the preceding sections, (2) a uniform pressure source with zero impedance
(Z, = 0, eq. (13)), and (3) a uniform velocity source with zero admittance
(Bs = 0, eq. (14)). 1In all three cases a radiation condition was imposed at
the hard-wall exit plane. (There are no negative moving waves in the region
z > L; see fig. 1.) For kb = 14 and above, the maximum insertion loss varies
by not more than 0.2 dB among the different source models and the corresponding
optimal liner admittances (not shown) are identical within the limits of the
convergence criteria. As kb decreases, the variation grows until there is
a spread of about 2 dB at kb = 4.0. Here the optimal liner for the pressure
source has an admittance of B m 0.45 - 0.611i and for the velocity source
B = 0.41 - 0.511i. In the lower frequency range (kb < 4), much larger differ-
ences in maximum insertion loss occur, but the corresponding optimal admittance
values are essentially the same. For example, at kb = 2 the admittances are
Bm 1.47 - 1.13i, 1.48 - 1.20i, and 1.43 - 1.081 for the wave, pressure, and
velocity sources, respectively. Hence, the assumed source impedance seems to
have little effect on the admittance of an optimal uniform liner, although

some discrepancies among corresponding insertion losses can occur, particularly
at the lower frequencies.

Notice that both table I and part (a) of table III present optimal prop-
erties for a uniform liner and a plane-wave source. However, in table I the
liner is infinite in length (no negative moving wave, fig. 3(a)), whereas in
table III, the liner terminates in the hard wall at 2z = L, reflections from
this interface being accounted for. Also, the transmission loss is maximized
in table I, whereas the insertion loss is maximized in table III, although
there appears to be little practical difference in these criteria for the cases
studied. A comparison of the two tables shows little difference in the optimal
admittances at any kb value. Nonetheless, the finite liner produces consider-
ably more attenuation than does the same length of infinite liner for kb < Ui,
when only one hard-wall duct mode is cut on.

Termination impedance.- A similar study of the effect of the exit-plane
termination condition on optimal liner performance was conducted with similar
results as summarized in table IV. For example, at kb = 1.57, a maximum
insertion loss of 53.1 dB was calculated for a uniform pressure source with a
radiation condition (no reflected modes) imposed at the liner termination. On
the other hand, an insertion loss of only 42 dB is calculated for this pressure
source with a 2 u 1 (eq. (20)) termination impedance for all modes. Compa-
rable data from Euinn's paper (ref. 6) are also summarized in table IV. By
considering basic differences in the mathematical models (Quinn employed a
finite-difference solution), the agreement is fairly good. A measurable differ-
ence in optimal liner properties for the two different types of termination was
calculated only at the lowest value of kb (1.57).
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Infinite Duct With an Admittance Discontinuity

Optimal properties are presented in this section for an infinite duct with
a source at z = 0 and an admittance discontinuity at =z = L/2 (fig. 8). The
transmission loss is optimized over the interval z =0 to =z = L. This con-
figuration is sometimes referred to herein as "two-section."

Plane~wave source.- Transmission losses for the optimal uniform (fig. 3)
and two-section configurations are compared in figure 9(a). Clearly, configura-
tions with two lined sections are superior for this plane-wave source and
kb < 10. The knee in the attenuation curve at about kb = 4 is most likely
associated with second-mode cut-on, which for a hard-wall section, occurs at
kb = 3.83. Quinn (ref. 6, fig. 1) noticed a similar behavior for a configura-
tion with three sections.

The uniform liner optimal admittance values (fig. 4 and table I) were taken
as starting points for the DFP algorithm. Optimal admittance properties for
two sections are plotted in figures 9(b) and 9(c) and are also summarized in.
table V. Note here that & = 0 for the first secticns if kb > 5.0, This
effect has been observed by Beckemeyer and Sawdy (ref. 7) for a two-dimensional
duct liner with two sections. The first section, therefore, becomes purely
reactive and dissipates little or no acoustical energy. For example, with
kb = 6, the first section accounts for a transmission loss of only 0.8 dB,
whereas for the second section the loss is about 14.4 dB. Hence, the second
section produces almost twice as much loss as does the corresponding optimal
uniform liner, which is twice as long. At the present time, it is thought that
the first section (closest to the source) causes a modal redistribution of
sound and thereby increases the effectiveness of the second section with an
attendant increase in the overall loss of acoustical energy. (See refs. 7
and 8.)

Also note that for kb > 10, the uniform and two-section configurations
give essentially the same transmission loss. It would seem that at these fre-
guencies, the two-section solutions, which were started at the optimal uniform
solutions, would remain stationary. To the contrary, however, the DFP algo-
rithm located an optimum with substantially different admittances. For example,
with kb = 20, the optimal uniform liner has B8 = 0.14 - 0.32i. With two sec-
tions, an optimum is found with B8 = 0.02 - 0.34i for the first section and
B = 0.29 - 0.48i for the second. Thus, it is clear that the transmission loss
is close to its maximum value over a fairly large region in the four-dimensional
admittance space.

Monopole source.- Results are presented in figure 10 and table VI for a
monopole source located in a duct with an impedance discontinuity (two sections).
In general, the DFP algorithm was initialized at the admittance values of the
corresponding optimal uniform liner configuration. A number of the cases, how-
ever, were started differently because of the numerical problems associated with
calculating the eigenvalues of the radial modes.

Transmission losses for comparable two-section and uniform configurations
are presented in figure 10(a). The largest advantage of liner segmentation
appears in the lower frequency range kb £ 7. It should be recalled that like
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results were obtained for a plane-wave source. Also it is interesting to note
that at these lower frequencies (kb £ 7), where the two-section configuration
is superior, only the lowest two radial modes are cut on. At the higher fre-
quencies (kb Z 7), the transmission losses for the uniform and segmented liner
configurations converge to a constant loss of about 10 dB. However, although
the uniform liner settles down to this constant value at about kb = 7, the
segmented liner displays two intervals of sighificant additional loss, near

kb = 11 and kb = 13. These bumps in the curve are probably associated with

the cut on of higher order radial modes, which are strongly excited by the mono-
pole source.

Optimal admittance values are presented in figures 10(b) and 10(ec). The
high-frequency values are in good agreement with the predictions of the single
reflection criterion as discussed earlier. This geometric acoustics approxi=-

0.4i
kb

for the first and second sections, respectively. The second section admittance
is very close to its high-frequency limit for kb > 7, but the first section
does not settle down near its limit until kb > 17. In fact, the first section
admittance curve has about the same shape as does the plot of the corresponding
optimal uniform liner admittance (see fig. 6) for kb > 7, but is more exagger-
ated. Here, the average of the two-section admittances is approximately equal
to the optimal uniform admittance, but this may be a result of taking the uni-
form optimum as the initial guess for the segmented liner optimization. Differ-
ent curves resulted for different liner admittance starting values. In fact,
the liner properties for this duct and source configuration were found to be
very sensitive to the starting values used with the DFP algorithm. However,
the maximum transmission loss for Kb > 7 appeared to remain relatively sta-
tionary and varied only slightly from the values shown in figure 10(a). None-
theless, figure 10 does suggest that when several propagating modes are excited
by the noise source, a simplified ray approach may be adequate for selecting
the admittances of sections not adjacent to the source. A full mode theory
would still be required at lower frequencies and even at intermediate frequen-
cies for the section closest to the source.

mation gives optimal admittances of approximately 0.8 + and 0.6 +

Turbomachinery Source

A 0.3048-m-diameter research compressor installed in an anechoic chamber
at Langley Research Center was selected as the noise source to be modeled for
the calculations presented in this section. The compressor was configured as
a single stage with 19 rotor blades and 26 outlet guide vanes. The flow condi-
tion corresponding to a shaft speed of about 19 000 rpm was selected. For this
situation the average axial flow Mach number in the inlet is approximately 0.Y4
and the normalized blade passage frequency is kb = 16.53, where b is the
inlet radius. The various physical parameters for the compressor configuration
were supplied to a computer program (ref. 15) which calculated the source mode
amplitudes and phase angles for rotor/stator interaction noise. The source
program employs the Kemp-Sears viscous-wake interaction model. According to the

usual Tyler-Sofrin analysis, three m = -7 radial modes are excited, that is,
(_7,0)7 (_7,1), and (-7,2).
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Results for the finite-length liner configurations shown in figure 11 are
summarized in figure 12. The numerical optimization process was initialized
at 6 = 5.0 and kd = 1.57 for all lined sections. The bar labeled "exact" in
figure 12 shows the maximum transmission loss for the exact modal source struc-
ture. Although for the plane-wave and monopole sources very little was gained
from liner segmentation at a kb as large as 16, for this particular turboma-
chinery source an additional 3 dB of attenuation can be realized with two liner
segments and 5 dB with three segments.

The other bars in figure 12 correspond to variations from the exact source
structure. Calculations were made for one-, two-, and three-segment liners for
each of the following source variants: (1) assuming equal energy in each of
the propagating m = -7 modes with the calculated relative phasing retained,
(2) replacing the three complex modal coefficients with their absolute values
(zero phase), and (3) setting the amplitude of all but the least attenuated
mode to zero. It is clear from this example that although liner segmentation
can result in a significant improvement regardless of the source type, the liner
cannot be optimally designed unless both the modal distribution of source energy
and the relative phasing among these modes are known.

CONCLUSIONS

This paper has presented an investigation of the influence of source char-
acteristics on the optimal properties of uniform and two-section ducts. Two
simplified sources were considered in some detail and over a frequency range
greater than previously studied. The principal findings of this study are:

(1) Optimal liners based on modal theory approach Cremer s criterion at
low normalized frequencies; that is, kb < 1.

(2) Optimal liners based on modal theory approach the geometric acoustics
limit at high normalized frequencies; that is, kb > 10.

(3) Source distribution effects are important for optimal liner design.

(4) Two-section .liners are significantly better than one-section liners
in the frequency range 3 £ kb £ 7 for plane-wave and monopole sources.

(5) Source and termination impedance effects, although given only a limited
examination in this paper, appear to be unimportant for optimal liner design.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

October 27, 1976
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APPENDIX

OPTIMAL LINER DESIGN BY ASCENT ALGORITHMS

The purpose of this appendix is to summarize the general characteristics
of the Davidon-Fletcher-Powell (DFP) optimization algorithm. The DFP algorithm
is discussed extensively by Luenberger (ref. 10) and interested readers are
encouraged to consult this reference for additional information. Some material,
however, is provided in this appendix for the sake of completeness beginning
with the method of constant transmission loss contours.

Method of Transmission Loss Contours

When the admittance space is two-dimensional, as is the case for a uniform
or one-section liner (fig. 3, for example), optimal liner admittance values
can be determined by plotting constant transmission loss contours. Typical
results are shown in figure 5 for a plane-wave source with L = 2b. Shown
in figures 5(a) and 5(b) are the contours for a uniform liner (fig. 3) with
kb = 2 and kb = 3, respectively. The real part of the admittance gz (the
conductance) is plotted along the abscissa whereas the imaginary part of the
admittance o (the susceptance) is plotted along the ordinate. The transmis-
sion loss contours of TL = 10, 15, 20, . . . represent the locus of points
in the admittance plane yielding 10, 15, 20, . . . dB, respectively, of noise
attenuation. The contours shown here were constructed by computing the losses
at 100 grid points and using a computer-graphics program to map the contours.
An alternative numerical approach, which is applicable with the higher dimen-

sional admittance spaces of multisectioned liners, is discussed in the next
section.

The DFP Method

Refer to figure 13 and let an arbitrary point in the admittance plane be
determined by the admittance vector B with components (g£,0). (See eq. (6).)
The basic strategy of the DFP method is intimately associated with the defini-
tion of an ascent vector D. Thus, in figure 13 by starting at an arbitrary
initial point (initial feasible solution) EO in the admittance plane, it is
desired to move in a direction specified by the ascent vector D s0 that a
greater value of transmission loss TL 1is obtained at B1. This approach sug-
gests the following iterative algorithm:

Biyq = By + oDy (kmo0, 1,2, ...) (a1)

determined by a sequence of ascent vectors 50, D1, « « o, ﬁk, each leading to
a greater value of TL. The sequences of «) parameters appearing in equa-

tions (A1) are scalars which maximize TLy,q. Here the subscript k indicates
the kth iteration.
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To be more specific, in the DFP method the ascent vectors Dk are chosen
to be

ﬁk = [s,] V{TL}, (A2)

where [sk] is a square matrix and V{TL}k is the gradient of TL evaluated
at B,,. The square matrix [Sk] is updated at each iteration in an attempt to
have %he algorithm converge more rapidly than the method of steepest ascent -
in which case [Sk] is always the identity matrix -~ and in an attempt to be
computationally more efficient than Newton’s method - in which case [S, ] is
always the inverse of the matrix of second partials of TL.

The DFP algorithm, as given by Luenberger (ref. 10), is as follows:

(1) Start with any symmetric positive-definite matrix [SO] (usually
[S] = [1]) and any initial point B.
(2) Beginning with k = 0, set
D, = [S,] v{TL} (A3a)

(3) Maximize TL(Ek + akﬁk) with respect to op to obtain

Bk+1 = Bk + aka (A3b)

(4) With P, = o, D set R, = V{TL} - V{TL} and determine the
k ’ k k+1 k
updated [Sk+1] matrix as follows:

== ==
p, P (S, IR, R,*[S,]
Kk k kik LSk

[Seaq] = [S,.] + . (A3c)

_T -
Py Ry R[S, Ry

and repeat the procedure by going to step (2). The procedure is terminated
when D, 'D, is sufficiently small.

The DFP method combines the best features of steepest ascent (good perfor-
mance if the initial value of B is not close to the solution) and Newton's
method (rapid convergence close go the solution). It is generally conceded to
be a fast, reliable optimization method and it works very well on problems of
the type considered in this report.
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TABLE I.~ OPTIMAL PROPERTIES OF A UNIFORM CIRCULAR LINER (FIG. 3)

FOR A PLANE-WAVE SOURCE AND L = 2b

kb Conductance, Susceptance, TL,
£ (o] dB

2 1.54 1.29 49.8

3 .81 .78 31.5

4 LU6 .61 15.1

5 .34 .59 9.8

6 .28 .57 7.6

8 .22 ’ .53 5.4

10 .21 ) 4.5
12 .19 .bo 4.1
14 17 .38 3.7
16 .15 .36 3.3
18 .15 .33 3.0
20 14 .32 2.9

- .- . |




TABLE II.- OPTIMAL PROPERTIES OF A UNIFORM CIRCULAR LINER (FIG. 3)

FOR A MONOPOLE SOURCE AND L = 2b

Kb Conductance, Susceptance, TL,

E ‘o dB
2 1.1 1.16 43.5
2.5 .82 .80 37.7
3 .62 .53 30.5
3.5 .49 .29 23.0
4 .45 .07 16.9
4.5 .48 -.12 12.9
5 .58 -.26 10.8
5.5 .79 -.34 9.7
6 1.08 -.18 9.7
6.5 .98 L1 9.8
T .76 A7 10.3
7.5 .68 .13 10.5
8 .62 .07 10.3
8.5 .60 .01 10.1
9 .63 ~.03 9.8
9.5 .65 .01 9.7
10 .51 .1 10.3
10.5 LU45 ~.10 10.5
11 .68 ~.22 9.9
11.5 .85 ~.09 9.5
12 .84 .05 9.4
12.5 .11 .20 9.6
13 .59 .18 10.3
13.5 .50 .05 10.7
14 .51 ~.05 10.5
14.5 .60 ~.15 10.0
15 .76 -.16 9.5
15.5 .88 -.03 9.5
16 , .78 A7 9.7
16.5 .62 .10 10.1
17 .61 .01 10.1
17.5 .63 .01 9.9
18 .62 -.01 9.7
18.5 .65 -.04 9.5
19 .69 0 9.5
19.5 .64 .03 9.8
20 .63 -.04 9.9
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TABLE III.- EFFECT OF SOURCE IMPEDANCE ON OPTIMAL PROPERTIES OF A

UNIFORM CIRCULAR LINER (FIG.

Conductance,
£

1.47
.84
J42
.27
.22
.20
L7
L1

Conductance,
£

1.48
.86
.45
.29
.21
.20
A7
.15

Conductance,
£

1.43
.82
.4
.28
.22
.21
.16
.14

11(a)) FOR L

(a) Plane-wave source

Susceptance,
a

1.13
.69
.55
.54
.50
.42
.37
.33

= 2b

(b) Uniform pressure source

Susceptance,
g

1.20
.74
.61
.54
.53
LUl
.38
.33

TL, Insertion loss,
dB dB

66.6 67.1

h9.7 49.8

13.1 13.2

7.0 7.0

4.7 4.7

4.1 4,1

3.4 3.4

2.9 2.9

TL, Insertion loss,
dB dB

60.7 59.7
55.9 55.3

15.0 14.6

7.9 7.5

5.3 5.2

4.5 4.4

3.7 3.5

3.0 3.0

(e¢) Uniform velocity source

Susceptance,
g

1.08
.68

TL, Insertion loss,
dB dB
73.9 76.0

51.9 51.5

12.5 12.8

6.0 6.4

4.3 4.y

3.8 3.9

3.2 3.4

2.7 2.8
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TABLE IV.- EFFECT OF TERMINATION IMPEDANCE ON OPTIMAL PROPERTIES OF A

UNIFORM CIRCULAR LINER (FIG. 11(a)) FOR L = 2b
I:Unif‘or'm pressure sour’ce]
Radiation termination ZInu = 1.0 (eq. (20)) Zy = 1.0 (ref. 6)
kb .

Conductance, |Susceptance, | IL, |Conductance,|Susceptance,| IL, [Conductance, |{Susceptance,| IL,
£ o3 dB £ o] dB g g dB
1.57 2.40 3.20 53.1 1.86 3.30 41,6 2.40 3.20 43,0
b 72 .39 .61 10.8 .39 .61 10.6 .38 .58 1.7
7.85 .25 .51 5.4 .25 .50 5.6 .23 .57 6.2
12.57 .22 .36 3.9 .22 .35 3.9 .24 .30 4.1




TABLE V.- OPTIMAL PROPERTIES OF A TWO-SECTION CIRCULAR LINER (FIG. 8)

kb

W OoO~NoOUVUTI =l wwwionN

[ e e e iy
QO XX-JONETWN - O

FOR A PLANE-WAVE SOURCE AND L

2b

First section

Second section

Conductance,
12

1.48
1.09
.75
A2
.20
.07
.05
.04
.04
.03
.02
.02
.02
.02
.01
.01
.02
.02
.02
.01
.01
.12
.16

TL,
Susceptance, Conductance, Suscéptance, dB
g g [of
1.44 1.54 1.01 53.2
1.06 .12 .88 43.5
.95 .97 .53 38.1
.85 1.26 .25 38.4
.78 1.40 .40 37.2
.74 1.37 .60 36.2
.70 1.02 .y 24.6
.66 .92 .39 18.5
.62 .82 .45 15.2
.53 .53 .57 10.3
AT .u8 .54 7.0
U5 LU0 .69 6.2
.45 .59 .54 5.1
Ly .60 4o L.9
.35 .54 U2 b7
.30 .8 .43 4.3
.35 .29 .50 L 5
.34 .29 .48 4.3
.38 .40 .u5 3.9
.25 .38 41 3.5
.24 .36 .38 3.4
.39 .16 .05 2.7
.23 .23 .13 2.7
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TABLE VI.- OPTIMAL PROPERTIES OF A TWO-SECTION CIRCULAR LINER (FIG. 8)

FOR A MONOPOLE SOURCE AND L

First section

kb Conductance, Susceptance,
g o
2 1.10 1.20
2.5 .60 .85
3 .32 .65
3.5 27 .28
4 17 -.02
4.5 .06 -.38
5 .08 -.71
5.5 0 ~1.09
6 .13 ~1.62
6.5 .63 -2.42
7 1.07 -.21
7.5 <76 -.12
8 .72 -.13
8.5 .65 -.19
9 .65 -.50
9.5 .65 -. 11
10 .33 .06
10.5 .11 -.25
11 . -.95
11.5 .96 -1.1
12 2.06 .20
12.5 1.14 a2
13 .29 Ll
13.5 .14 .01
14 .39 =17
14.5 .72 -.45
15 1.04 -.68
15.5 1.17 -.1
16 1.28 .15
16.5 .88 .18
17 .81 -.05
17.5 .76 .01
18 .73 -.02
18.5 LTH -.10
19 .84 -.05
19.5 .74 .01
20 .61 -.16

Conduc
g

1.

.81
.01
.70
.39 -.
.19
.12
.85
.70
.60
.48
.50
51
.51
.55

—_

= 2b

Second section

tance,

10 1

.58 -

.64
.66
.60
.o
.53
Y
.70 -.
.72
.61

.55 0

.51 -.
LA

.50 0

.59
.50
.50

.50 0
.54 0

.50
.56
.66

Susceptance,

(¢

14
.35

-.05
-. 47

97
.46
.87
.70
.57
.45
.28
.29
.22
.13
.24
.03
14
.08
.03
.15
.06
.04
05
.04
.07

01
.06

.0d
.02
.02

.06
.01
.09

L,
dB

—
w
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(a) Pressure source.

{(b) Velocity source.

Figure 2.- Simplified source models.
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Figure 3.- Infinite duct with a
uniform liner.
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Transmission loss, TL, dB
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Normalized frequency, kb

(a) Transmission loss.

Figure 4.- Optimal properties of a uniform circular liner (fig. 3) for a

plane-wave source and L = 2b,
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Conductance, §

— — — — C(remer, eq. (1lla)

DFP solution and Rice's
solution (ref. 2)

S e e— e ——

Normalized frequency, kb
(b) Conductance.

Figure 4.- Continued.
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Susceptance, O

— — — — Cremer, eq. (lla)

e  DFP solution and Rice's
solution (ref. 2)
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Normalized frequency, kb

(¢) Susceptance.

Figure 4.- Concluded.
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Figure 5.- Optimization by constant transmission loss contours for a

uniform circular liner (fig. 3) with a plane-wave source and
L =2b, '
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Susceptance, @
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(b) kb = 3.0.

Figure 5.- Concluded.
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(a) Transmission loss.

Figure 6.- Optimal properties of a uniform circular liner (fig. 3)
for a monopole source and L = 2b.
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(b) Conductance.

Figure 6.- Continued.
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Figure 6.- Concluded.
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Incidence angle ¢

Monopole source

Optimal normal admittance = (l.O + i 225—9) cos ¢

Figure T7.- Geometrical duct acoustics.

rws ey o mm e G s
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e

Figure 8.- Infinite duct with an
admittance discontinuipy.
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(a) Transmission loss.

Figure 9.- Optimal properties of a two-section circular liner (fig. 8)
for a plane-wave source and L = 2b.
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(b) Conductance.

Figure 9.~ Continued.
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Figure 9.- Concluded.
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(a) Transmission loss.

Figure 10.- Optimal properties of a two-section circular liner (rig. 8)
for a monopole source and L = 2b.
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Conductance, §

—mee 15t section
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Normalized frequency, kb

(b) Conductance.

Figure 10.- Continued.
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(c) Susceptance.

Figure 10.- Concluded.
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(a) One section.

(b) Two sections.
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(c) Three sections.

Figure 11.- Duct liner configurations for turbomachinery source.
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Figure 12.- Maximum transmission loss for a research compressor for

different source models., Circular liners (fig. 11);

Mach number = 0.4; and m = -7.
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Figure 13.- Optimization strategy.
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